Resource Constrained Semantic Segmentation for Waste Sorting

Mehrbod Nowrouz
Politecnico di Torino
M.Sc in Data Science and Engineering
Mehrbod.Nowrouz@studenti.polito.it

Abstract

This project was carried out to explore and implement
tiny deep learning models in the context of waste manage-
ment and sorting. The first three models were implemented
and tested on the project’s target dataset in binary seg-
mentation and instance segmentation manners to establish
a baseline of all three models for future experiments. The
earlier experiments consist of improvements applied to the
model itself and the dataset through, in turn, variations of
the models’ encoder, decoder sizes, and multiple data aug-
mentation techniques applied to the dataset. Later experi-
ments include various personal contributions of the authors,
one of which is knowledge distillation, which was experi-
mented on BiSeNet. Dataset’s class imbalances were also
dealt with by exploring loss functions that tended to sta-
bilize the is- sue. ICNet’s large model size was also ad-
dressed through pruning and quantization methodologies.
The initial optimizer used in the project has also undergone
trials with different algorithms. Eventually, with the better
versions of all models being ready, the models were eval-
uated on a well-known dataset such as TACO to showcase
the models’ performances on a different dataset distribu-
tion. The code is available at ht tps://github.com/
masoud-khalilian/mlidl-waste

1. Introduction

The growing population of the earth has led to frequent
problems that are targeting nature’s natural cycles, among
which growing mass waste production is of high impact
and requires humanity to minimize its damage efficiently
to nature as it cannot recycle these wastes independently.
Therefore, categorizing the waste into different categories
to recycle them with respect to their features has been the
solution so far. However, recycling of the waste has been
performed by humans, a solution that suffers from low pro-
ductivity and increased health risks. During the past two
decades, optical sorters have become popular in industrial
material recovery facilities (MRFs). The devices employ

Mohammad Masoud Khalilian
Politecnico di Torino
M.Sc in Data Science and Engineering

MohammadMasoud.Khalilian@studenti.polito.it

a combination of lights and sensors to illuminate and cap-
ture images of objects. They use compressed air to move
rejected objects to different bins. This technology has dif-
ficulty dealing with heavy items. As a means to overcome
the limitations of optical sorters, a new trend involves the
use of robotic technology. This technology uses Artificial
Intelligence and visuals in order to separate the waste. This
project also attempts to utilize semantic segmentation mod-
els required for waste management and sorting to automate
the process of separating the waste. Since this task’s target
industry is IoT devices that work together through visuals
of a running belt, the deep learning models not only should
be able to address the accuracy aspect of waste sorting, they
are also required to be relatively small to fit into the resource
constraints of such devices.

2. Related Works

Semantic Segmentation is the act of classifying every
pixel of a given image into the existing classes. In other
words, it separates the image into different parts, with each
part belonging to a certain class in the original image. This
is usually done by assigning a certain number/color to each
class that is expected to be found. This process plays a key
role in waste sorting as it lets the robots recognize different
types of waste from each other in an image (or video) and
act with respect to their indicated classes. However, waste
sorting is usually done by IoT devices which are highly
resource-constrained and would also require these models
to be light in order to be implementable on such devices.
Subsequently, the concept of Tiny Machine Learning comes
into play which exclusively focuses on machine learning
models that are small enough to be operable on tiny devices.
Example usages of Tiny ML in waste sorting can be seen
in [5], which uses it in robotic garbage collectors that tend
to search and gather random garbage that is left in the urban
areas (Streets, Parks, etc.) and keep them in their waste-type
separated mobile storage until later unloaded when they are
full. The other would be a more common usage of it in
waste processing plants [3] in which vacuum technology
is utilized to grab and separate the garbage through visual

aids. While the prior used the TACO [7], GarbageNet [&]
datasets for training, the latter refused to use these public
datasets, since it claimed that these datasets were mostly
focused on urban images of waste and would not there-
fore, suit models that are used in industrial setups as by
the time the garbage reach these places, they are strongly
deformed, dirty and piled up on top of one another when
carried on conveyor belts. Alternatively, they proceeded to
create a Synthetic Dataset through mostly data augmenta-
tion that was generated by them through the following steps:
They first took 4 to 5 different images for each category of
waste and applied three geometric transformations (trans-
lation, rotation, and scaling). As a result, they had many
separate images of different waste with a black background.
Afterward, pairs of separate images were randomly chosen
and put together on colorful backgrounds in an occasional
overlapping manner. The resulting dataset was “cases with
multiple, possibly overlapping objects across a range of di-
verse backgrounds”. There are also three different models
used, which are as follows:

2.1. ENet [6]

The general idea of the publishers of this model revolves
around the fact that average semantic segmentation models
are quite heavy, and they claim to have produced a model
that is ”’18x faster, requires 75x less FLOPS, has 79x less
parameters, provides similar or better accuracy to existing
models”. They have accomplished such results by mov-
ing a 512x512 image through an initial block consisting of
two branches of a MaxPooling and a 3x3 stride 2 convolu-
tion which are then concatenated to produce an overall of
16 feature maps. Then goes through a series of bottleneck
modules. There are two branches of the main one being a
ResNet followed by maxpooling and padding and the other
being a series of layers among which conv is either a reg-
ular, dilated, or full convolution (also known as deconvolu-
tion) with 3 x 3 filters, or a 5 x 5 convolution decomposed
into two asymmetric ones. There are a few notable design
choices, such as ENet first two blocks heavily reducing the
input size and using only a small set of feature maps. The
idea behind it is that visual information is highly spatially
redundant and thus can be compressed into a more efficient
representation. Another design choice is saving indices of
elements chosen in max pooling layers and using them to
produce sparse upsampled maps in the decoder to tackle the
spatial information drop as a result of downsampling. An-
other approach is the usage of larger encoders and smaller
decoders which is motivated by the idea that the encoder
should be able to work in a similar fashion to original clas-
sification architectures and the decoder should be only in
charge of upsampling the output of the encoder, only fine
tuning the details. It is also worth mentioning that choosing
to apply the pooling operation in parallel with convolutions

(instead of before or after it) leads to speeding up inference
time in the initial 10 blocks. Based on [2], they understood
that an n x n convolution can be decomposed to two smaller
1 x nand n x 1 filters called asymmetric convolution, which
helps with increasing the diversity of functions learned by
blocks and leads to increasing the receptive field. They have
further utilized this practice by using projection, convolu-
tion, and projection to decompose large convolution layers,
resulting in a great reduction of the number of parameters,
making them less redundant, and subsequently large speed-
ups.

2.2.ICNet [11]

The network architecture of ICNet consists of three
branches, each having completely different inputs and lay-
ers. There are 3 inputs entering the model at the same time,
each belonging to its own branch, with the bottom one be-
ing a full-resolution image (1024 x 2048) while the middle
and top ones being, in turn, a 1/2 and 1/4 downsampled
version of the same image. However, since these branches
are supposed to work in parallel, the middle and bottom
branches, despite having a larger input, include lightweight
CNNSs. On the contrary, the top branch consists of a PSP-
Net with a downsampling of 8, which results in a 1/32 fea-
ture map. Although the top branch is based on a full seg-
mentation backbone, the input resolution is low, resulting
in limited computation. Even for PSPNet with 50+ lay-
ers, inference time and memory are 18ms and 0.6GB for
the large images. The idea is to get high-quality segmen-
tation from medium and high-resolution branches to help
recover and refine the coarse prediction. Though some de-
tails are missing and blurry boundaries are generated in the
top branch, it already harvests most semantic parts. Then all
the extracted feature maps will be, in turn, from top to bot-
tom fused through a cascade-feature-fusion unit and trained
with cascade label guidance. These two features are rather
too complex to fit into a few lines, but a brief explanation
would be that cascade-feature-fusion tends to upsample the
smaller feature map (resulting from the upper branch) to
match the lower branch, then both feature maps are normal-
ized and accumulated followed by a relu layer. The label
guidance system also tends to enhance the learning proce-
dure in each branch through utilizing different scale ground
truth labels to guide the learning stage of low- medium
and high-resolution branches, with each branch having ap-
pended a weighted softmax cross entropy loss.

2.3. BiSeNet [9] [10]

BiSeNet or, more specifically, Bilateral Segmentation
Network’s perception of average quick semantic segmen-
tation models is that they, in search of low inference times,
tend to sacrifice low-level details and thus the accuracy. To
tackle such a trade-off, they propose a model that, on the

Model | Object (mIoU) | GFLOPS | #Parameters | Model Size (MBs)
ICNet 75.37% 452.791 26.245M 108.2
BiSeNet 77.26% 23.614 0.621M 2.57
ENet 85.66% 25.430 0.363M 1.64

Table 1. Binary Segmentation results of ICNet, BiSeNet and ENet mo

dels and their characteristics

Model | Paper (mloU) | Bottle(mIoU) | Aluminum (mIoU) | Nylon (mIoU) | Avg mloU
ICNet 69.82% 73.85% 82.45% 73.09% 79.59%

BiSeNet 78.23% 78.61% 81.78% 75.57% 81.24%
ENet 81.57% 85.59% 83.25% 86.33% 87.08%

Table 2. Instance Segmentation of ICNet, BiSeNet and ENet and the corresponding results on segmentation of Paper, Bottle, Aluminum

and Nylon

one hand, tries to capture low-level details and generate
high-resolution feature maps using a Detailed Branch con-
sisting of wide channels and shallow layers. On the other
hand, obtain high-level semantic context through a Seman-
tic Branch that includes narrow channels and deep layers.
Both of these layers provide completely different informa-
tion, and a normal combination of these two branches would
lead to bad performance and hard optimization. There-
fore, these branches are merged using a Guided Aggrega-
tion Layer. This layer employs the contextual information
of the Semantic Branch to guide the feature response of
the Detailed branch and does Vice versa for the Semantic
Branch, then accumulates both resulting feature maps into
one, then applies a 3x3 convolution at the end.

3. Experiments
3.1. Binary Segmentation Experiments

The dataset ReSort-IT and the Starting Codes were
downloaded from the original project repository. Then the
models were implemented to match the Starting Codes. All
the models were run for 200 epochs with a weight decay
of 2e-4 and a learning rate of 5e-4, which decayed every
epoch for about 0.995. The results are all reported in ta-
ble. 1. As you can see ICNet and BiSeNet models are quite
similar, with an mIoU of 75% and 77%, with Enet having a
significantly better performance of nearly 8-10%. Enet and
BiSeNet clearly suffice the tininess criteria of being below
10 Mbs. However, it seems that ICNet’s Pytorch implemen-
tation is far heavier than expected, with a size of approxi-
mately 108 MBs. It is also notable that the GFLOPS as-
sociated with ICNet is significantly higher than an average
tiny machine learning model that performs semantic seg-
mentation. These problems will be dealt with later during
the Quantization and Prunning section.

3.2. Instance Segmentation Experiments

After Binary Segmentation Experiments, the model was
updated to support Instance Segmentation in order to differ-
entiate the type of objects (Paper, Bottle, Aluminum, and
Nylon) from each other. Subsequently, masking and loss
functions were updated to carry out this task. As demon-
strated in Table. 2, the results are similarly separated by
models, recording only the mloU of different objects and
the overall mloU.(Spaces with no objects were also in-
cluded have also influenced the average mIoU calculation)

Evidently, Enet again showed a better average mloU
with 87%, followed by BiSenNet’s 0.81% and lastly IC-
Net’s 0.79. The difference in performance of these mod-
els is more evident in detecting paper, with ICNet being
remarkably lower than the other two with a mIoU of 69%
compared to that of Enet and BiSeNet’s approximate 80%.
The gap between ICNet and Enet becomes even more appar-
ent in detecting Nylon and bottle with the model’s mloU’s
nearly being in turn 73% and 86%. However, this contrast
is less evident in Aluminum detection, with all three models
laying in the range 81 to 83%.

4. Improvements and further analysis
4.1. Encoder and Decoder Sizes

As an exploration, the encoder and decoder sizes of all
above three models were modified in order to experiment
with how encoder and decoder sizes affect the output of
these models. Four different alternatives were introduced
per each model. Each alternative was coded with the letters
D (Decrease), I (Increase), and S (Standard). The prior let-
ter refers to the encoder and the latter to the decoder sizes.
Observation of their performance is demonstrated in table.
3. Further details regarding these alternatives’ characteris-
tics and performances:

Enet-D-D: is a version of Enet in which the encoder sizes
have decreased to 13 bottlenecks, and one bottleneck from

Model Paper (mloU) Bottle(mIloU) Aluminum (mIoU) Nylon (mIoU) Avg mloU
Enet-D-D 69.82% 61.96% 59.78% 61.96% 67.81%
Enet-S-I 86.29% 89.38% 89.31% 90.12% 90.83%
Enet-I-S 53.31% 64.37% 74.80% 50.23% 68.31%
Enet-I-1 84.20% 88.89% 88.15% 84.36% 88.90%
BiSeNet-D-D 36.00% 27.68% 48.19% 29.92% 46.43%
BiSeNet-D-I 64.04% 71.90% 75.22% 69.17% 71.58%
BiSeNet-I-D 61.51% 66.41% 66.25% 73.85% 67.48%
BiSeNet-I-1 20.46% 5.96% 40.64% 26.84% 32.69%
ICNet-D-D 82.70% 86.66% 86.80% 86.11% 88.11%
ICNet-D-I 79.07% 79.79% 78.43% 80.22% 83.11%
ICNet-I-D 77.27% 81.25% 80.93% 80.57% 83.65%
ICNet-I-1 76.56% 79.46% 81.35% 81.54% 83.41%

Table 3. Alternatives of initial three models and their corresponding results on the initial four classes

sections 4 and 5 of the decoder has been removed. This al-
teration led to a vanishing gradient with which the model
got stuck at 0.6781 despite the fact that no activation func-
tion and batch normalization were independently removed
which supposedly occurs due to encoders not managing to
capture features, since smaller encoders would fail to cap-
ture complex features. Therefore, in the next model, the
standard encoders were kept, and only the decoder was al-
tered.

Enet-S-I: is a version of Enet in which the encoder was
not changed and decoder bottlenecks increased to 12 lay-
ers. Despite the paper’s conclusion on decoders being only
a means of upsampling and are not required to be large, a
larger decoder produced better results compared to the orig-
inal model. This should not be surprising since the decoder
size was purposely reduced in the original paper to decrease
the model size and performance time. This solution led to
better accuracy of 1-2 %; however, increased model size by
nearly 16 %.

Enet-I-S: is a version of Enet in which the number of bot-
tlenecks was increased by 4 in section 1 and 8 in sections 2
and 3. The decoder was not changed in this version. This
alternate version significantly increased the model size and
yet failed to produce better results.

Enet-I-I: is a version of Enet in which the encoder is sim-
ilar to Enet-I-S and the decoder is similar to Enet-S-I. The
results were fairly similar to the original Enet in spite of the
fact that the model size was nearly doubled. This could have
occurred due to the fact that the original model would suf-
fice to learn the small dataset of this project, and increasing
the model size would not necessarily improve the perfor-
mance. While in the above, encoder and decoder sizes were
mostly altered in terms of layers, in the following models,
encoder and decoder sizes were mostly changed in terms of
channel sizes.

BiSeNet-D-D: is a version of BiSeNet in which many chan-
nels were removed from various parts of the model. The re-

sults are expectedly disappointing as such removal of chan-
nels would lead to the model not being able to capture com-
plex patterns and features.

BiSeNet-D-I: is a version of BiSeNet in which the char-
acteristics of the encoder are the same as BiSeNet-D-D’s
but 4 layers were added to the feature fusion section. This
model’s accuracy is the best of all alternatives, yet it under-
performs the standard model by 10%, which is reasonable,
as previously mentioned.

BiSeNet-1-D: is a version of BiSeNet in which many layers
and channels were increased in it, especially in the xcep-
tion39’s part. However, many convolution layers were re-
moved from feature fusion. The accuracy of this alternate
version is close to the previous one. It is believed such poor
results have appeared due to the fact that increasing chan-
nels usually will force the addition of down-sampling lay-
ers, which would reduce spatial resolution.

BiSeNet-I-I: is a version of BiSeNet that is similar to
BiSeNet-1-D, but instead of removing layers from feature
fusion, some were added. The results shockingly deterio-
rate by more than 30%.

ICNet-D-D: is a version of ICNet in which the input of the
subl branch was not down-sampled to 1/8, and cascade fea-
ture fusion was also reduced in size. The idea behind it was
to find out how much accuracy was sacrificed for a faster
model. As you can see, the model’s performance notably
increased from nearly 80 % to approximately 89%. How-
ever, this would remarkably slow the model in time of use.
It even nearly doubled the training time. However, since this
would lead to fewer layers, the model size was decreased by
2 MBs.

ICNet-D-I: is a version of ICNet in which layers were re-
moved from all three branches while cascade feature fusion
channels were enlarged.

ICNet-I-D: is a version of ICNet in which layers were in-
creased in subl branch from 3 to 6 while output channels
of ICHead were reduced in size. The results were slightly

Model Augmentation Average(mloU)

T1 89.8%

ENet T2 90.39%
T3 87.6%
T1 73.6%
BiSeNet T2 82.5%
T3 64.0%
Tl 79.5%

ICNet T2 85.10%
T3 67.8%

Table 4. Effect of the three experimented Data Augmentations on
each model

better since this branch was purposely light due to having a
large input while it is of high potential.

ICNet-I-I: is a version of ICNet in which its encoder lay-
ers are similar to ICNet-I-D and its decoders are similar to
ICNet-I-D’s. The results were almost the same, with the
same reasoning as the previous alternatives.

4.2, Data Augmentation

Data Augmentation refers to any sort of expansion of
the dataset at hand through applying transformation func-
tions in order to create diversity in our dataset. In other
words, instead of training the model on the same dataset,
we briefly modify our data every epoch in a random man-
ner. This leads to avoiding over-fitting and results in better
generalization of the model, which subsequently means the
model would most likely have a better accuracy. It is no-
table that this methodology helps avoid data collection and
labeling costs, as performing the same task through adding
new data would be costly. To perform this task, we pro-
posed three different alternative augmentations, and after
comparing them for each model, we chose the transforma-
tion that had a higher impact on each model’s accuracy. The
three augmentations (T1, T2 and T3) are as follows:

* ”T1”: First, an increasing scale of 15% that applies a
bilinear interpolation function on the empty area of the
image and nearest neighbor on the masks followed by
a random crop of the desired image size. Then, as the
waste processing plants could have various lighting, a
randomized brightness jittering with a range of 60% to
140% and as waste tends to be quite diverse in terms of
colors, a randomized contrast, saturation, and hue jit-
tering of in turn 40% to 160%, 70% to 130% and 80%
to 120% were also applied. Eventually, a random hor-
izontal flip was applied to further diversify the dataset.

* ”T2”: Includes all of the above with the exception of
a random rotation applied before a random cropping
image.

Class Frequency

6000
5000
4000

3000

2000
- I I
0

None Paper Bottle Aluminium Nylon
Figure 1. The class frequencies show a portion of imbalance in our
data.

* ”T3”: Includes all of the other two transformations
with the exception that random crop was replaced with
a random resized crop of ratio 50% to 100% resized
back to the image default size with hopes of applying
even more diversity to the dataset. However, it was
suspected that this transformation might lead to fewer
objects appearing during training and result in reduced
accuracy.

As demonstrated in Table 4, T2 performed the best among
the three and thus was used in the following experimenta-
tions as well.

5. Personal Contribution
5.1. Knowledge Distillation

Knowledge distillation is the act of transferring knowl-
edge from a larger model to a smaller one. More
accurately, since smaller models would usually have a
poorer performance compared to larger models given
the same data and computational resources, the larger
model (also referred to as teacher) will be trained on the
dataset and produce the softmax output while the smaller
model (student) would instead of being trained on the
dataset’s ground truth labels, will be trained on the soft-
max of much larger models and would learn to imitate
the larger model’s performance on the dataset. How-
ever, this project’s teacher and student models are the
same model with different backbones. BiSeNet[ResNet18]
acts as the teacher, and BiSeNet[Xception39], which is
also the baseline model, plays the role of the student.
The BiSeNet[ResNet18] managed to reach a 75% average
mloU, and BiSeNet[Xception39] achieved a 72% average
mloU.

5.2. Loss functions

As mentioned earlier, every dataset might be under the
effect of some classes being more frequent than others,

Loss function impact on mioU

s0 HI | I =
70 ¥ | 1 o | 5 |
so NE 4 - i1 I | | |
so fi ‘ I . | | |
a0 L | 0 I
30 | I e n | | I
P | | I e | | |
10 i | |l | ‘)| 1 | | |
o M | i i L |
w w w
(¥} u v

u e s 3] 3
o o - o o o
1] b g =] =
E = =
L0 20]
g K [
= = =
ENet ICNet BiSeNet

W Average mPaper Bottle Aluminium m Nylon

Figure 2. The mloU results of all models with different losses can
be seen above.

and this problem will lead to models being less accurate
on classes that are less frequent. There are several ways
of overcoming this issue, such as re-sampling the dataset
into one that is more balanced in terms of class frequency.
This project has also addressed the issue but with a different
methodology which addresses the issue through alteration
of loss functions. These loss functions were mathematically
designed to fix this issue. Two different loss functions were
tested:

1.Weighted Cross Entropy: It is similar to the default
Cross Entropy Loss. However, a weight is assigned to each
class to prioritize the minority class. This weight is usually
determined by inversing the class count in the dataset and
assigning it as the weight of the class. This leads to the mi-
nority class having a larger weight which leads to larger loss
values produced by these classes, forcing the algorithm to
prioritize the minority.

2.Focal Loss with Alpha [1] [4]: Another approach is to
balance the class weights based on their classification dif-
ficulty. Therefore, the focal loss is an algorithm that uses
the prediction accuracy of classes in the weights assigned
to them. The better the accuracy, the simpler it is to classify
it, and thus the lower the weight would be and vice versa.
Howeyver, to further increase the user’s control over the loss
function, a version of focal loss exists that also incorporates
custom class weights into the algorithm as well which is be
the focal loss version utilized in this project. Based on [4], a
gamma = 2.0 showed better results, and thus it was used in
this project as well. Accordingly, the class frequencies were
calculated and shown in 1. As demonstrated, there is a slight
imbalance in the dataset. To overcome this issue, the above
two loss functions were put into practice, and the results
were shown in 2. Based on the figure, ENet and BiSeNet
showed more balanced results for focal and weighted cross-
entropy loss. However, both didn’t manage to outperform

CE except for BiSeNet’s case, in which focal loss managed
to show better results. It was also discovered that focal loss
tends to produce vanishing gradients during backpropaga-
tion. In our case, Enet’s focal loss implementation led to
the model being stuck at 67.8 % for over 30 epochs.

5.3. Quantization and pruning

Quantization, as the name suggests, refers to the act of
mapping continuous and infinite values into smaller sets of
finite values, which in the case of deep learning, is applied
to the neural network weights. For instance, if there is a
weight that is a float, it rounds the float into an integer. This
significantly reduces the model size as a float is represented
with 32 bits while an integer is represented in 8 bits. In this
example, with a rather simple solution, the model size was
reduced by a factor of 4. This is a rather cheap approach
to tackle model size problems. Despite the fact that this ap-
proach increases efficiency, it reduces precision and intro-
duces noise. However, this noise is rather small compared
to the efficiency it provides the target model. On the other
hand, there also exist countless parameters in the models
that do not add any value to model predictions. The removal
of these parameters would minimally reduce the accuracy
while providing a noticeable reduction in memory, batter,
and power consumption. This concept is broadly referred to
as pruning. According to above two methodologies, a Post-
Training Dynamic/Weight-only Quantization and a global
unstructured pruning based on L1 norm of 90% on instances
of nn.conv2d and nn.linear were applied which overall man-
aged to reduce model size for about 22% from 120 MBs
to 98MBs and GFlops dropping from 452 GFLOPS to only
162 GFLOPS while keeping a 84% average mloU. Unfortu-
nately, It was realized that unstructured punning does turn
weights to 0. However, it was found that most hardware
and frameworks are not yet able to accelerate sparse ma-
trices’ computation. In other words, no matter how many
weights are set to 0, it would not impact the actual cost of
the network. Therefore, many tend to do so manually in a
structured way. In this project, initial structured L1 and L2
norm pruning were applied to all layers in order to see if
this PyTorch library would affect the model size at all. It
was realized that no difference occurred despite the change
in pruning function.

6. Conclusion

In this paper, the performance of three tiny machine
learning models has been showcased, and the importance
of encoder and decoder sizes and how they would affect
the trade-off between accuracy and inference time has been
demonstrated. In the following, it was shown that data aug-
mentation could diversify a small dataset to maximize the
value that could be extracted from it. It was also discovered
that loss functions could tackle the issue of class imbalance

and how algorithms could force the model to focus on ob-
jects that are more complex to classify in order to balance
the model’s prediction accuracy for all objects. Knowledge
distillation was also utilized in the case of BiSeNet, to see
how a larger model could affect a smaller model’s learn-
ing process. Finally, quantization and pruning were put into
practice to decrease ICNet’s initial large model size, and it
was revealed how a significant decrease in the number of
parameters could decrease the model size and yet have a
minor impact on the model’s performance.

References

[1] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and
Serge Belongie. Class-balanced loss based on effec-
tive number of samples. In CVPR, 2019. 6

[2] Jonghoon Jin, Aysegul Dundar, and Eugenio Culur-
ciello. Flattened convolutional neural networks for
feedforward acceleration, 2015. 2

[3] Maria Koskinopoulou, Fredy Raptopoulos, George
Papadopoulos, Nikitas Mavrakis, and Michail Mani-
adakis. Robotic waste sorting technology: Toward a
vision-based categorization system for the industrial
robotic separation of recyclable waste. /EEE Robotics
Automation Magazine, PP:2—-12, 04 2021. 1

[4] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaim-
ing He, and Piotr Dollar. Focal loss for dense object
detection. CoRR, abs/1708.02002, 2017. 6

[5] Jingyi Liu, Pietro Balatti, Kirsty Ellis, Denis Had-
jivelichkov, Danail Stoyanov, Arash Ajoudani, and
Dimitrios Kanoulas. Garbage collection and sorting
with a mobile manipulator using deep learning and
whole-body control. In 2020 IEEE-RAS 20th Interna-
tional Conference on Humanoid Robots (Humanoids),
pages 408414, 2021. 1

[6] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and
Eugenio Culurciello. Enet: A deep neural network ar-

chitecture for real-time semantic segmentation. CoRR,
abs/1606.02147, 2016. 2

[7] Pedro F. Proenga and Pedro Simdes. TACO: trash
annotations in context for litter detection. CoRR,
abs/2003.06975, 2020. 2

[8] Jianfei Yang, Zhaoyang Zeng, Kai Wang, Han Zou,
and Lihua Xie. Garbagenet: A unified learning frame-
work for robust garbage classification. IEEE Trans-
actions on Artificial Intelligence, 2(4):372-380, 2021.
2

[9] Changgian Yu, Changxin Gao, Jingbo Wang, Gang
Yu, Chunhua Shen, and Nong Sang. Bisenet V2: bi-
lateral network with guided aggregation for real-time
semantic segmentation. CoRR, abs/2004.02147, 2020.
2

[10] Changgian Yu, Jingbo Wang, Chao Peng, Changxin
Gao, Gang Yu, and Nong Sang. Bisenet: Bilateral
segmentation network for real-time semantic segmen-
tation. CoRR, abs/1808.00897, 2018. 2

[11] Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jian-
ping Shi, and Jiaya Jia. Icnet for real-time seman-
tic segmentation on high-resolution images. CoRR,
abs/1704.08545, 2017. 2

